Multi Frequency Phase Fluorimetry (MFPF) for Oxygen Partial Pressure Measurement: Ex Vivo Validation by Polarographic Clark-Type Electrode
نویسندگان
چکیده
BACKGROUND Measurement of partial pressure of oxygen (PO2) at high temporal resolution remains a technological challenge. This study introduces a novel PO2 sensing technology based on Multi-Frequency Phase Fluorimetry (MFPF). The aim was to validate MFPF against polarographic Clark-type electrode (CTE) PO2 measurements. METHODOLOGY/PRINCIPAL FINDINGS MFPF technology was first investigated in N = 8 anaesthetised pigs at FIO2 of 0.21, 0.4, 0.6, 0.8 and 1.0. At each FIO2 level, blood samples were withdrawn and PO2 was measured in vitro with MFPF using two FOXY-AL300 probes immediately followed by CTE measurement. Secondly, MFPF-PO2 readings were compared to CTE in an artificial circulatory setup (human packed red blood cells, haematocrit of 30%). The impacts of temperature (20, 30, 40°C) and blood flow (0.8, 1.6, 2.4, 3.2, 4.0 L min(-1)) on MFPF-PO2 measurements were assessed. MFPF response time in the gas- and blood-phase was determined. Porcine MFPF-PO2 ranged from 63 to 749 mmHg; the corresponding CTE samples from 43 to 712 mmHg. Linear regression: CTE = 15.59+1.18*MFPF (R(2) = 0.93; P<0.0001). Bland Altman analysis: meandiff 69.2 mmHg, rangediff -50.1/215.6 mmHg, 1.96-SD limits -56.3/194.8 mmHg. In artificial circulatory setup, MFPF-PO2 ranged from 20 to 567 mmHg and CTE samples from 11 to 575 mmHg. Linear regression: CTE = -8.73+1.05*MFPF (R(2) = 0.99; P<0.0001). Bland-Altman analysis: meandiff 6.6 mmHg, rangediff -9.7/20.5 mmHg, 1.96-SD limits -12.7/25.8 mmHg. Differences between MFPF and CTE-PO2 due to variations of temperature were less than 6 mmHg (range 0-140 mmHg) and less than 35 mmHg (range 140-750 mmHg); differences due to variations in blood flow were less than 15 mmHg (all P-values>0.05). MFPF response-time (monoexponential) was 1.48±0.26 s for the gas-phase and 1.51±0.20 s for the blood-phase. CONCLUSIONS/SIGNIFICANCE MFPF-derived PO2 readings were reproducible and showed excellent correlation and good agreement with Clark-type electrode-based PO2 measurements. There was no relevant impact of temperature and blood flow upon MFPF-PO2 measurements. The response time of the MFPF FOXY-AL300 probe was adequate for real-time sensing in the blood phase.
منابع مشابه
Transcutaneous pO2 measurement during tourniquet-induced venous occlusion using dynamic phosphorescence imaging.
A sufficient oxygen supply in skin grafts requires a functioning microcirculation. Venous occlusion impairs the microcirculation and is therefore a major threat of healing. Luminescence life time imaging (LLI) enables the non-invasive and two-dimensional assessment of the transcutaneous oxygen partial pressure (p(tc)O2). In the current trial this new device was applied for monitoring of venous ...
متن کاملIn vivo oxygen uptake into the human cornea.
PURPOSE We provide a new procedure to quantify in situ corneal oxygen uptake using the micropolarographic Clark electrode. METHODS Traditionally, upon placing a membrane-covered Clark microelectrode onto a human cornea, the resulting polarographic signal is interpreted as the oxygen partial pressure at the anterior corneal surface. However, the Clark electrode operates at a limiting current. ...
متن کاملAssessment of tissue oxygen tension: comparison of dynamic fluorescence quenching and polarographic electrode technique
INTRODUCTION AND METHODS Dynamic fluorescence quenching is a technique that may overcome some of the limitations associated with measurement of tissue partial oxygen tension (PO2). We compared this technique with a polarographic Eppendorf needle electrode method using a saline tonometer in which the PO2 could be controlled. We also tested the fluorescence quenching system in a rodent model of s...
متن کاملAn Ultramicro Oxygen Electrode.
326-pg. 1964.-The advantages of a ~-p-diameter platinum cathode in the Clark-type o:xygen electrode are shown to be freedom from effects due to flow, stirring, or mechanical pressure. When used with a .5-mil polyethylene membrane the I-P electrode shows only a 2 ts difference between a vigorously stirred solution and the unstirred solution. A mechanical pressure of 200 psi on the I-P covered el...
متن کاملTranscutaneous pO2 imaging during tourniquet-induced forearm ischemia using planar optical oxygen sensors.
BACKGROUND Oxygen-dependent quenching of luminescence using transparent planar sensor foils was shown to overcome the limitations of the polarographic electrode technique in an animal model. This method was then transferred to a clinical setting to measure the transcutaneous pO(2) (p(tc)O(2)). METHODS In six healthy subjects, a cuff on the upper arm was occluded up to 20 mmHg above systolic p...
متن کامل